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Currently, most edge-based Deep Reinforcement Learning (Deep-RL) applications have been deployed in 
the edge network, however, their mainstream studies are still short of adequate considerations on its 
limited compute and bandwidth resources. In this paper, we investigate the near on-policy of actions 
taking in distributed Deep-RL architecture, and propose a “hybrid near on-policy” Deep-RL framework, 
called Coknight, by leveraging a game-theory based DNN partition approach. We first formulate the 
partition problem into a variant of knapsack problem in device-edge setting, and then transform it 
into a potential game with a formal proof. Finally, we show the problem is NP-complete whereby an 
efficient distributed algorithm based on the potential game theory is developed from device perspective 
to achieve fast and dynamic partitioning. Coknight not only significantly improves the resource efficiency 
of the Deep-RL but also allows the inference to enforce the scalability of the actor policy. We prototype 
the framework with extensive experiments to validate our findings. The experimental results show that 
with the premise of a rapid convergence guarantee, Coknight, compared with Seed-RL, can reduce GPU 
utilization by 30% while providing large-scale scalability.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Deep reinforcement learning (Deep-RL) [39,42], which inte-
grates deep neural network (DNN) into a framework of reinforce-
ment learning (RL) to help software agents learn how to reach 
their goals, has been widely deployed on various mobile or station-
ary devices, such as smartphones, wearables, smart cameras, and 
other intelligent objects to provide diverse digital services [31,40]. 
However, given the inherent constrains in energy consumption, 
chip size and compute capacity, these devices are usually SoC-
based and characterized by limited performance [18,41], which 
as a result cannot fully exploit the potentials of Deep-RL. To ad-
dress these issues, cloud center is usually introduced to develop 
a “cloud center + mobile device” architecture in traditional solu-
tions. However, due to their high QoS requirements, this archi-
tecture has to struggle to make the trade-offs between network 
bandwidth, computation efficiency, and latency overhead for DNN-
based service acceleration. Therefore, a new type of computation 

* Corresponding author at: Shenzhen Institute of Advanced Technology, Chinese 
Academy of Sciences, Shenzhen, Guangdong, 518055, China.

E-mail addresses: hao.dai@siat.ac.cn (H. Dai), js.wu@siat.ac.cn (J. Wu), 
yang.wang1@siat.ac.cn (Y. Wang), czxu@um.mo.edu (C. Xu).
https://doi.org/10.1016/j.jpdc.2022.06.006
0743-7315/© 2022 Elsevier Inc. All rights reserved.
paradigm—mobile edge computing (MEC), which extends the capa-
bilities of cloud platform to the edge of the network—was widely 
studied in recent years to exploit these capabilities to facilitate 
various computations [6,7,21,37]. As such, given the high require-
ments on compute capacities for DNN training and inference, it 
is of utmost important to conduct resource-efficient and scalable 
Deep-RL based on the MEC solution [30,34].

For the performance optimization of DNN, most works focus on 
reducing the computation overhead subject to the constraints on 
compute resources on devices. Some current mainstream methods 
typically tackle the issue via model compression [13,25], parameter 
quantization [14], model pruning [11,33], model early exit [35,36], 
and so on. These technologies are characterized by separating the 
training and inference of deep learning into different phases and 
focusing squarely on the performance optimization of the infer-
ence. In particular, the models are finely trained in servers, and 
the quantization and/or pruning are performed on the pre-trained 
model. Since Deep-RL implements model training through inter-
action with environments, it’s necessary to perform corresponding 
actions in a certain environment to evaluate the new strategies 
to be used. Thus the inference and training are interleaved and 
inseparable in Deep-RL, which makes it infeasible for the above op-
timization methods to use in large-scale problem [8]. Much worse, 
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the interactions with the environment (including inference and 
action execution) often have high overheads, and consequently be-
come the bottleneck of the whole system.

On the other hand, given the performance gap between GPU 
and CPU, the service acceleration through edge servers with GPU 
tends to be a promising approach. For instance, compared with 
CPU, the processing time is less than one tenth when the same 
DNN inference task is executed on GPU. As such, the current main-
stream frameworks often support large-scale distributed Deep-RL 
in a CPU-GPU collaborative manner, such as GA3C [3], DD-PPO [38], 
IMPALA [9], Seed-RL [10], and so on. All these frameworks put the 
entire training and even the entire inference on the GPU for accel-
eration and leave the interaction with the environment on the CPU. 
Unfortunately, these frameworks are not designed for the edge net-
works as they lack the consideration of the limited edge resources. 
Although the migration of all tasks to the edge servers is feasi-
ble, it is not cost-efficient as it would cause wastage of network 
bandwidth and device computation resources, making it difficult 
to scale to large-scale clusters.

To address these issues, we design and implement a scalable 
and efficient Deep-RL framework, called Coknight, based on the 
idea of DNN partition [20,24] with the aid of the edge network to 
support intelligent applications deployed in resource-constrained 
mobile devices. DNN partition is an often-used method for co-
operative inference acceleration between edge servers and mobile 
devices by flexibly splitting a DNN to both sides [20,24]. However, 
compared to existing partition methods which either adopt heuris-
tic methods [24,28,33] or graph-based methods [20], Coknight 
bears some distinct features, which are short of adequate consider-
ations in the existing studies: 1) Coknight is fairly efficient by ac-
complishing the partition in quadratic time; 2) Coknight is highly 
scalable by distributing the computation across all the devices; 3) 
Coknight is fully dynamic by adapting to the changes of the num-
ber of mobile devices. Moreover, to the best of our knowledge, we 
are the first to integrate the DNN partition into the Deep-RL frame-
work to accelerate the model training.

We design Coknight to achieve these features by overcoming 
the demerits of both IMPALA [9] and Seed-RL [10], two typical 
Deep-RL architectures designed for edge computing. To this end, 
we first formulate the partition problem into a variant of knapsack 
problem [19,26] in the device-edge setting, and then transform 
the problem into a multi-player game and prove it is a potential 
game. Finally, we show the problem is NP-complete whereby an 
efficient distributed algorithm based on the potential game theory 
is developed from device perspective to achieve fast and dynamic 
partitioning [5,17,23]. With Coknight, we can not only significantly 
improve the resource efficiency of the Deep-RL but also allow the 
inference to enforce the scalability of the actor policy. We pro-
totype the framework with extensive experiments to validate our 
findings.

In summary, we make the following contributions:

• We design a collaborative large-scale actor-learner framework, 
called Coknight, that integrates DNN partition with Deep-RL to 
jointly accomplish the model inference between mobile device 
and edge server. We thus achieve a concept of “hybrid near 
on-policy” that can improve the resource efficiency and the 
parallelism of multiple actors with a rapid convergence guar-
antee.

• We formulate the partition problem into a variant of knap-
sack problem in the device-edge settings and prove its NP-
Completeness. Then we transform the problem into a multi-
player game and prove it is a potential game. According to 
the proofs, we further design a dynamic distributed algorithm 
with time complexity of O (K2N 2) for the DNN partition 
109
Fig. 1. The architecture of IMPALA (a) and the off-policy model of IMPALA (b). Data 
(model parameters and trajectories) transmission between the actor and the learner 
is asynchronous and timing.

problem in Coknight, where K is the number of layers of DNN 
and N is the number of devices.

• We implement the Coknight framework and conduct extensive 
experiments on Atari Games [12] and a large-scale simulation 
study to validate its scalability and efficiency.

The remainder of the paper is organized as follows. Section 2
introduces the background and the motivation of our work. After 
that, we go through the architecture of Coknight detailed in Sec-
tion 3 and cover its dynamic partition algorithm in Section 4. We 
present the experimental results in Section 5 and discuss some re-
lated works in Section 6, which is followed by the conclusion in 
Section 7.

2. Background and motivation

In this section, we introduce some classic Deep-RL frameworks 
that inspire our proposed method. Most Deep-RL methods in the 
early era usually work in a simulator-based environment. Thus 
early Deep-RL operates in a synchronized single-agent architec-
ture in the “online policy” manner, in which the agent leverages 
the latest trained policy to take action. In such architecture, the 
model can converge apace with few interactions. However, this 
single-agent design can barely scale out as a large amount of data 
training incurs significant overheads, compromising its overall per-
formance.

To this end, a more general asynchronous architecture – actor-
learner architecture – has been extensively used [2,32]. As opposed 
to the single-agent architecture, in this architecture, two agents are 
employed to work asynchronously – an actor is responsible for in-
teracting with the environment and generating trajectories, while 
a learner conducts model training by updating the policy based 
on the generated trajectories. This so-called “off-policy” method 
dramatically improves the parallelism of the agents, which in turn 
boosts the efficiency of the Deep-RL. However, the convergence of 
this method is affected by the frequency of the model updates, 
which could require a large number of communication resources 
for the trajectories and parameter transmissions.

IMPALA. As shown in Fig. 1(a), IMPALA [9] is a typical actor-
learner architecture where the model training and inference occur 
in the learner and the actor, respectively. With an asynchronous 
inference mechanism, IMPALA can be easily scaled out. However, 
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Fig. 2. Comparison of multiple classic models inference time on different CPU/GPU.

Fig. 3. The architecture of Seed-RL (a) and the “near on-policy” of Seed-RL (b). Data 
(observations and actions) transmission between actor and learner is synchronous 
and real-time.

its shortcomings are also obvious: 1) the latency of CPU and GPU 
presents an order of magnitude gap, as shown in Fig. 2, and thus 
IMPALA cannot effectively benefit from the GPUs in the learner; 2) 
the adopted off-policy method usually leads to a large number of 
epochs when training Deep-RL model, as shown in Fig. 1(b).

Seed-RL. To overcome these shortcomings, researchers pro-
posed another framework called Seed-RL [10]. As shown in Fig. 3(a), 
both the inference and training of Seed-RL work in the learner, 
making full use of GPU to accelerate the entire Deep-RL training 
process. Meanwhile, as illustrated in Fig. 3(b), all the inferences 
in Seed-RL are performed using the same DNN parameters in the 
learner, resulting in a so-called near on-policy which converges 
within fewer epochs than IMPALA. Seed-RL bears some similarities 
with synchronous training methods because of the concentrated 
computations and the parallel environment. Thus, it is very effi-
cient when using a simulator for training in the cloud center.

Motivation. Unfortunately, when we tried to adopt Seed-RL in 
the edge network, we found some crucial issues: 1) bandwidth 
resources in the edge network are always scarce, and the observa-
tion data are usually low-dimensional and redundant (e.g., images 
and voices), which could result in a high cost in data uploads; 2) 
110
Fig. 4. In a typical edge computing architecture, multiple devices are connected to a 
specific edge server.

all the computations are performed in the learner, which requires 
massive computation resources on the edge server and becomes 
bottleneck-prone.

Since IMPALA and Seed-RL have troubles in resource inefficiency 
and weak scalability, respectively, we intend to combine their 
advantages to address these issues. With the guarantee of con-
vergence efficiency, we can schedule computational tasks in an 
adaptive way based on the available compute and communication 
resources to improve the parallelism of actors and the resource 
efficiency of the edge servers. We will provide details of the ap-
proach in the next section.

3. Coknight and DNN partition

This section introduces the design details of our proposed 
actor-learner framework, Coknight, focusing on a formal descrip-
tion of the DNN partition problem inside.

3.1. Architecture overview

As illustrated in Fig. 4, a MEC network consists of an edge server 
and a set D = {d1, d2, ..., dN } of N devices. Devices communicate 
with the edge server over WiFi, 5G, or dedicated links. The edge 
server has certain resource constraints, including compute capacity, 
bandwidth, etc. Let Rc and Rb be the total amount of the edge 
server’s computation and bandwidth resources, respectively. With 
this model, we intend to formalize a DNN as a set of tasks that 
consume computation and bandwidth resources, and allocate them 
between devices and servers.

Fig. 5(a) is an example of an image classification neural network 
composed of a total of 11 layers. The type and scale of calculation 
for each layer are marked on the figure, including 9 3 × 3-CNN 
layers and 2 FC layers. In fact, all DNNs can be formulated into 
a similar architecture, with each layer performing a correspond-
ing tensor calculation and exporting the results to the next layer 
of the network. Since the essence of DNN inference is a forward 
calculation with input tensors, the computation of each layer is 
proportional to the scale of input tensors. We can measure the 
calculation of each layer using the number of floating-point oper-
ations (FLOPs) [29].

We can define a K-layer DNN as a sequence L = (l1, l2, ..., lK), 
lk represents the kth layer of the neural network. Let ck denote the 
FLOPs of lk , which is a function taking tensor size as input. Indeed, 
the FLOPs are associated with not only the input tensor size but 
also the type of layer. The details of the formula calculation for 
FLOPs can be found in [29]. In short, for a certain DNN, the amount 
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Fig. 5. An example of a deep neural network (a) and a DNN partition between device and edge server (b).
of computation under the same input scale C can be calculated as 
follows:

C =
K∑

k=1

ck (1)

It is worth noting that the input tensor of each layer is prede-
fined in the DNN, that is, the transmission of the network can also 
be portrayed in advance. Therefore, we can reduce resource con-
sumption by partitioning the DNN between the edge server and 
the device. Meanwhile, since the computing speed of the edge 
server is faster than that of the device, we can accelerate the 
inference by offloading part of the task from the device to the 
edge server. As illustrated in Fig. 5(b), the 11-layer DNN is par-
titioned into two parts. The first four layers are executed on the 
device, and the output tensors are transferred to the edge server, 
where the remaining seven layers are calculated. After the infer-
ence task is complete, the edge server sends results back to the 
device side.

Since the output tensor of the hidden layer is generally smaller 
than the raw data in most DNNs, the benefits of partition are 
not only reducing the computation overhead but also minimizing 
the bandwidth consumption, which means a trade-off between the 
computation and communication. As shown in Fig. 6(a), an appro-
priate partition would benefit the overall inference time when the 
network bandwidth is sufficient. It can fully exploit the bandwidth 
to achieve equivalent performance to inference on GPU. In contrast, 
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in the case of a low-bandwidth network environment, since only 
tensors of the hidden layer are sent to the edge server, the par-
tition approach is even better than putting all the layers on the 
edge server, as shown in Fig. 6(b). We leverage DNN partition in 
the proposed framework “Coknight” to attain resource efficiency, 
scalability, and latency reduction.

The design of the Coknight framework is shown in Fig. 7(a). The 
main difference between Coknight and IMPALA&Seed-RL is that the 
inference task is not accomplished in a single site, rather, it is exe-
cuted cooperatively between the actor and the learner through the 
partition. In such a way, we can achieve acceleration by striking a 
balance between reducing computation on low-speed devices and 
minimizing network bandwidth consumption.

Meanwhile, the policy of the action taken in Coknight is also 
noteworthy. As shown in Fig. 7(b), in an inference task, the shal-
low network may use the outdated model parameters while the 
deeper network leverages the latest parameters. Note that the ac-
tion a selected by the original strategy π(θ t) based on observation 
s is:

a = π(s, [θ0
t , θ1

t , θ2
t , θ3

t , ..., θk
t ]) (2)

while the action selected by the new strategy in Coknight is:

a′ = π(s, [θ0
t , θ1

t , θ2
t , θ3

t+1, ..., θ
k
t+1]). (3)

We call this strategy “hybrid near on-policy”. Since the shallow net-
work is usually composed of some networks whose parameters are 
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Fig. 6. Inference time distribution with different partition layers.
Fig. 7. The architecture of Coknight (a) and the “hybrid near on-policy” of Coknight
(b). Layer outputs and actions transmission between actor and learner are syn-
chronous and real-time, while the parameter and trajectories are asynchronous and 
timing.

relatively stable during the training (e.g., CNN), it is reasonable to 
consider that the inference model in Coknight is similar to that in 
Seed-RL.

It is worth noting that in a general case when resources are 
sufficient resources as in Seed-RL, Coknight tends to perform the 
inference tasks on the learner. Only when resource bottlenecks 
occur will Coknight perform the partition on some devices. For 
those partitioned devices, we need to upload both intermediate 
tensor data and regular observation data to the edge server for 
model updates. Meanwhile, it is unnecessary to pay attention to 
the model and trajectory upload issues in those non-partitioned 
devices (all the layers are on the server). Therefore, the bandwidth 
consumption of Coknight will not increase exponentially compared 
to Seed-RL, since this upload operation is usually performed at a 
relatively low frequency.

With an appropriate partition of the DNN layers, Coknight can 
execute the front part of the DNN inference on devices and up-
load the rest to the edge server to complete the task. Hence, a 
crucial issue of Coknight is how to find the optimal partition of the 
network for each device actor, which is formally analyzed in the 
sequel.
112
3.2. Partition problem formulation

More generally, we assume a K-layer DNN, and leverage a vari-
able yi(0 ≤ yi ≤K) to indicate that the DNN is partitioned on yi th 
layer on device di (i.e., actor i). Let yi = 0 denote that the entire 
DNN model is executed on the edge server, while yi = K repre-
sents that the whole DNN model is calculated on the device.

Let Cd(yi) and Ce(yi) denote FLOPs calculated on the device 
and the edge server (i.e., learner) with decision yi , respectively, 
which can be formulated as the follows.

Cd(yi) =
yi∑

k=1

ck; Ce(yi) =
K∑

k=yi+1

ck (4)

We adopt floating-point operations per second (FLOPS) [29] to 
characterize the performance of devices and edge servers. We de-
note the FLOPS of the edge server as fe . Since the devices are 
diverse, we use f i

d to represent the FLOPS of the device di . There-
fore, the calculation time of a partition task on device di and on 
the edge server are represented by ti

d(yi) and ti
e(yi), respectively, 

and can be calculated as follows:

ti
d(yi) = Cd(yi)

f i
d

; ti
e(yi) = Ce(yi)

fe
(5)

In addition to the calculation time, we also need to pay atten-
tion to the data transmission time, which is proportional to the 
output tensor size of each layer, which is denoted as bk(0 ≤ k ≤K), 
where b0 represents the input tensor size, and bK is the output 
tensor size. Suppose the transmission cost per unit tensor of each 
link is the same, denoted as tr, the transmission time is then the 
ratio of bk and tr. In summary, the total response time Ti(yi) of a 
partition task on di can be formulated as follows:

Ti(yi) =

⎧⎪⎨
⎪⎩

ti
e(yi) + b0+bK

tr yi = 0

ti
d(yi) + ti

e(yi) + byi +bK
tr 1 ≤ yi ≤ K − 1

ti
d(yi) yi = K

(6)

Obviously, when the resources (both compute and bandwidth) are 
not limited, there will be an optimal partition that can minimize 
the response time of the entire task.

y∗
i = arg min

yi∈{0,1,...,K}
(Ti(yi)). (7)

Here, y∗
i is the optimal partition decision that minimizes the re-

sponse time.



H. Dai, J. Wu, Y. Wang et al. Journal of Parallel and Distributed Computing 168 (2022) 108–119
It is reasonable to suppose that a device could perform a se-
ries of DNN inference tasks for the long term in Deep-RL. Such 
workloads consist of continuous tasks with the same input size 
and model. Therefore, from the perspective of computational load, 
we can treat the series of tasks as a whole task W , consuming 
the same computation and communication resources continuously. 
For such an ongoing task W , the resources allocated by the edge 
server to the device are monopolized, once these resources are ear-
marked for di , they would not be shared or conflicted with other 
devices.

Our goal is to minimize the latency of all the devices, that is, to 
reduce Ti(yi) of all the devices. This problem can be modeled as a 
constrained optimization problem (COP) as follows:

minimize
N∑

i=1

Ti(yi) (8)

subject to:

0 ≤ yi ≤ K (9)
N∑
i

Ce(yi) ≤Rc (10)

N∑
i

δbyi ≤Rb. (11)

Here, δ is a proportional coefficient between the size of the tensor 
and the bandwidth it consumes. Based on the formulation of the 
multi-actor DNN partition problem, we will analyze its property 
and design the corresponding algorithm in the next section.

4. DNN partition algorithm design

Given the problem definition, in this section, we first conduct 
its complexity analysis in Coknight, thereby deriving an efficient 
algorithm based on the potential game theory [17].

4.1. Problem complexity

Firstly, we analyze the hardness of the problem to determine 
whether a polynomial-time optimal algorithm could be designed.

Theorem 1. The multi-actor DNN partition (MADP) problem we formal-
ized is NP-complete.

Proof. First, this problem is apparently in NP as any solution to its 
decision form can be validated in polynomial time. Then, we con-
duct a reduction from MADP to the classical NP-complete knapsack 
problem (KP) [19,26] in polynomial time, to show the hardness of 
MADP.

Given an instance of KP whose definition is as follows:

maximize
n∑

i=1

xi vi (12)

subject to:

n∑
i=1

xi wi ≤ C (13)

xi = {0,1};1 ≤ i ≤ n (14)

For the reduction purposes, we transform the original min-
imization of MADP into an equivalent maximization goal. We 
intend to minimize the task inference time on each device by 
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controlling the partition layer, that is, to maximize the benefits 
brought by the partition.

Through the observation, we can find that when the task is ex-
ecuted locally on the device, the constrained server computation 
and bandwidth are not consumed. Therefore, we design a utility 
function ui for device di based on yi =K:

ui(yi) = Ti(yi) − Ti(K);0 ≤ yi ≤ K,1 ≤ i ≤ N (15)

We let a decision variable xij = {0, 1} indicates whether the de-
vice di decides to perform the j-th partition. Since each device 
can only choose one partition layer, we need to make the follow-
ing constraints on xij :

K∑
j=0

xij ≤ 1 (16)

Combining with the formulas above, the equivalent maximization 
problem can be formalized as follows:

maximize
N∑

i=1

K∑
j=0

xijui( j) (17)

subject to:

K∑
j=0

xij ≤ 1 (18)

N∑
i=1

K∑
j=0

xijCe( j) ≤Rc (19)

N∑
i=1

K∑
j=0

xijδb j ≤ Rb (20)

xij = {0,1};0 ≤ j ≤ K,1 ≤ i ≤ N (21)

According to this formulation, we introduce how to construct 
an instance of MADP to handle any KP problem. Let N := n, 
Rc := C and Rb := +∞, we can align the constraints with KP. 
Then we let xi0 := vi , and add a dummy item xi1 := 0. With this 
trivial transformation, it is obvious that any inputs of KP can be 
adopted to MADP. That is, the MADP solution can be used to solve 
KP. Correspondingly, any KP solution can also solve a particular 
form of MADP. To sum up, the multi-actor partition problem can 
be confirmed NP-complete.

4.2. Dynamic algorithm

Although many algorithms (e.g., branch and bound method, 
greedy, etc.) are designed for such an NP-complete problem, con-
sidering the devices would gradually enter or leave the edge net-
work, we intend to develop an algorithm handling the dynamic 
increase and decrease of devices. For this purpose, we adopt game 
theory in the algorithm design.

Firstly, we formalize this problem as a game:

G =< �N , (Si)i∈ �N , (ui)i∈ �N > (22)

here, �N represents a set of N players; Si denotes the strategy 
set of each player i, which is the same as {yi | 0 ≤ yi ≤ K} in 
the partition problem; ui is the utility function of each player, 
consistent with its definition in Eq. (15), combined with resource 
constraints additionally. We suppose every player is selfish and in-
tends to maximize its utility function ui . And we will prove that 
Pure Nash Equilibrium (PNE) exists in G so that a concise and effi-
cient local search algorithm could be adopted.
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Theorem 2. The game G is an exact potential game.

Proof. Assuming there is a global utility function �, which indi-
cates the time reduction of the entire system compared with the 
latency that all devices inference locally. Let si denote the strategy 
chosen by player i, and s−i represent the strategy selected by other 
players except i. Given a set of player strategies �S = {s1, s2, ..., sN }, 
the definition of � is as follows:

�(�S) =
∑

i∈�S
ui(si). (23)

When player i changes its own strategy from si to s′
i , and other 

players’ strategies remain s−i , there is the following equation:

ui(si, s−i)−ui(s′
i, s−i) = �(si, s−i) − �(s′

i, s−i);
∀si, s′

i ∈ Si, s−i ∈ S−i .
(24)

Thus, G is a potential game with the potential function �, and 
hence always admits PNE in finite improvements.

Since there exists PNE in the G, we can attain the PNE through 
finite steps of improvement. Hence, the heuristic algorithm can 
theoretically achieve the optimal after a limited number of it-
erations. However, what we need is a dynamic polynomial-time 
algorithm so that devices can participate in the system fleetly. Ap-
parently, heuristic algorithms cannot meet our requirements.

Consequently, an intuitive, dynamic and efficient algorithm is 
that player i calculates its best response according to the strategy 
already selected by other players, that is:

s∗
i = arg max

si∈Si

u(si, s−i). (25)

It is a straightforward greedy algorithm, which we named “incre-
mental greedy algorithm.” The algorithm has high computational 
efficiency with an unsatisfactory approximation ratio. Besides, ac-
cording to the principle of “hybrid near on-policy,” we prefer to 
keep the same partition strategy for different actors to leverage 
the same hybrid model for inference, thus accelerating the conver-
gence of training.

To this end, we design a resource fairness algorithm named 
“dynamic efficient fairness partition algorithm,” which intends to 
make all actors carry out resource competition equally. The ba-
sic idea is that the newly added actor forms a pair with every 
actor who has already participated in Coknight, and performs the 
Pareto Improvement in duos. The whole algorithm is shown in Al-
gorithm 1.

On the one hand, DEFP is an incremental algorithm apparently. 
Moreover, this algorithm could be decremental because it can han-
dle the release of resources when the device goes offline, simply by 
selecting a player to re-execute the algorithm. On the other hand, 
DEFP is a fair algorithm for all devices since each player has made 
Pareto Improvement with other players pairwise to compete for re-
sources fairly. Thus, the algorithm can work in a distributed man-
ner, with each actor communicating directly with another actor to 
compete for resources. Furthermore, DEFP is a polynomial-time al-
gorithm, and we will give an approximate time complexity analysis 
of Algorithm 1 as follows:

Theorem 3. Given the N -players and K-strategies in game G, the time 
complexity of DEFP is upper bounded by O (K2N 2).

Proof. Firstly, the complexity of the best response in Eq. (25) is 
roughly O (K) (line 6). And the number of strategies in SN is K, 
hence the complexity of lines 5 − 12 is O (K2).
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Algorithm 1: Dynamic Efficient Fairness Partition (DEFP) al-
gorithm.

Input: S(s1, s2, ..., sN−1): A set of strategies that players {1, 2, ..., N − 1}
have adopted;

SN : A set of available strategies of player N ;
Output: S(s1, s2, ..., sN ): A set of strategies that players {1, 2, ..., N } have 

adopted
1 for (player i, si ) in S(s1, s2, ..., sN−1) do

/* Pair Pareto Improvement */
2 utility_of_pair_i_n ← 0;
3 available_resource ← the sum of resources occupied by player i and 

player N ;
4 stemp

i , stemp
N ← the strategy of on-device computing independently;

5 for s j
N in SN do
/* Best Response */

6 s∗
i ← calculate the best response for player i based on Eq. (25);
/* Pareto Improvement */

7 if ui(s∗
i ) + uN (s j) ≥ utility_of_pair_i_n then

8 utility_of_pair_i_n ← ui(s∗
i ) + uN (s j);

9 stemp
i ← s∗

i ;

10 stemp
N ← s j

N ;
11 end
12 end

/* update players strategy */

13 si ← stemp
i ;

14 sN ← stemp
N ;

15 end

Since it is necessary to traverse all the players to form pairs 
(line 1), the complexity of running the DEFP algorithm once is 
O (K2N ). For N players, it is necessary to repeat the DEFP algo-
rithm N times to construct the final strategy set. To sum up, the 
total complexity of solving N -players and K-strategies problem is 
O (K2N 2).

5. Performance studies

To validate our findings, we implemented Coknight based on Py-
Torch and gRPC to evaluate its performance. Firstly, we constructed 
a small-scale physical testbed to validate the model convergence. 
Afterward, we conducted a large-scale simulation based on physi-
cal test data to validate the scalability and efficiency. The simulator 
efficiently implemented the proposed algorithms and the model 
upon which the algorithms are built.

5.1. Experimental setup

By following the settings of IMPALA [9], we implemented the V-
trace algorithm and conducted experiments on the Atari suite [4]. 
Besides, we also took the hyper-parameters and optimization pro-
cedures from [9].

Datasets: We took the Atari games as the test environments. 
The size of each frame in games is 3 × 84 × 84. And we aggregated 
the reward of the game as part of the input, so the input tensor 
shape should be 4 × 84 × 84. Our goal is to maximize the game’s 
final score, which is reflected in the cumulative sum of all rewards 
in one round of the game.

Baselines: As for physical experiments, we treated IMPALA [9]
and Seed-RL [10] as baselines. Both methods are variations imple-
mented based on Coknight (yi = 0 or yi = K). Hence the per-
formance is marginal different from the original version, but the 
overall architecture is the same. Each set of experiments would 
train 6, 000, 000 steps to obtain stable scores.

And for the simulation comparison of DEFP algorithm, we eval-
uated it against mixed integer linear programming (MILP, i.e., opti-
mal solution, obtained by the solver), incremental greedy (IGreedy), 
and offline greedy (OGreedy) as baselines. We make a scalability 
analysis of the algorithm concerning the number of actors.
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Fig. 8. Performance comparison of the three frameworks. The figure from left to right is the convergence rate, convergence time, and running time, respectively.
Evaluation Platform: The experiments were conducted with 
Python 3.7.9, Pytorch 1.7.1, gRPC 1.32.0 and gym 0.18.0. As for 
the hardware of the platform, we performed experiments in three 
types of heterogeneous edge devices similar to [15]. We took 1×
Tesla-V100 32G as an edge server (learner), as well as 4 × 40 cores 
Intel(R) Xeon(R) E5-2630 v4 @2.20 GHz servers and Raspberry 
Pi 4B as the mobile devices (actors). In addition, we leveraged 
switches to build a wired edge network. We deployed Coknight’s 
actors on CPU (Intel/ARM) servers, while the leaner was deployed 
on the GPU server, with peer-to-peer communication to Actors via
gRPC. In the initial phase, each actor will run the partition al-
gorithm to establish communication with leaner. In addition, to 
validate the performance of Coknight in the edge network, we con-
strained the bandwidth of the subnetwork through switches.

5.2. Numerical results

We investigated an empirical experiment to validate the con-
vergence and resource efficiency of Coknight, IMPALA and Seed-RL
at first. After that, we compared the scalability of Coknight and 
Seed-RL by varying the number of actors. All methods adopted the 
same hyper-parameters, including the number of actors, batch size, 
buffer size, learning rate, etc. To make Coknight execute the parti-
tion strategy, we limit the network bandwidth of Coknight to 10
MB/s, which is a practical setting as most real-life WiFi. Further-
more, we provided a large-scale simulation to validate the scala-
bility of the proposed DNN partition algorithm.

5.2.1. Convergence efficiency
Firstly, we studied the impact on convergence rate and to-

tal running time between Coknight and other frameworks in two 
different game experiments: SpaceInvaders and MsPacman. Fig. 8
illustrates the performance comparison of the three frameworks 
with the same number of actors (n = 12). Regarding the conver-
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gence rate (left figure), we can find that due to the impact of the 
off-policy, IMPALA obtains the lowest score in the same step (i.e., 
convergence rate). It is worth noting that the score of Coknight is 
slightly higher than that of Seed-RL. We speculate that the shal-
low network of the hybrid near on-policy remains relatively sta-
ble, which leads to a particular regularization effect on the model 
and improves its reward. Meanwhile, as shown in Fig. 8 on the 
right, driving the same number of actors in an experimental en-
vironment with almost unlimited network bandwidth, Coknight’s 
running time is slightly lower than Seed-RL while still significantly 
improves compared to IMPALA. Combining these two results, we 
can find from the central figures that Coknight can obtain scores 
equivalent to Seed-RL when running after the same time. What’s 
more, in MsPacman Game, we found that the reward of Coknight
surpasses that of Seed-RL. These results actually indicate that the 
hybrid model in Coknight is relatively more robust.

5.2.2. Resource efficiency
Further, we focused on the resource usage of the learner dur-

ing the entire system running time, including GPU usage, memory 
usage, and bandwidth usage. We monitored the usage of resources 
during the entire training process and made statistics on the re-
source utilization in each period. The numerical results are illus-
trated in Fig. 9, and the X-axis is the utilization ratio of resources, 
such as GPU utilization and bandwidth. While the Y-axis is the 
density distribution of statistics, the larger it is, the longer the 
resource utilization remains at the corresponding x value during 
training. As shown in the diagrams of Fig. 9, the GPU utilization 
of Coknight is significantly reduced to approximately 60%, while 
Seed-RL requires more than 90%. In another word, Coknight saves 
around 30% of GPU utilization than Seed-RL, with almost the same 
performance guarantee. What needs to be explained is that the re-
duced part of the computation is not evaporated but allocated to 
actors’ CPUs. Another concern is that the bandwidth consumption 
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Fig. 9. The resource usage of the learner. From left to right are GPU usage, memory usage, and bandwidth consumption.
Fig. 10. How the performance of baselines varies with the bandwidth constraint.

Fig. 11. How the performance of Coknight and Seed-RL is relatively changed concern-
ing the number of actors.

of Seed-RL is proximate 12 MB/s. If the bandwidth of Seed-RL is 
limited to 10 MB/s following Coknight, it is reasonable to believe 
that the performance will decrease moderately. To further study 
the impact of bandwidth on performance, we changed the number 
of actors to 6 and then varied the bandwidth constraint from 50
MB to 2 MB through switches. The baselines performance varying 
with different bandwidths are shown in Fig. 10. It is worth noting 
that Seed-RL’s performance declined significantly as bandwidth de-
creased, while Coknight’s declined more moderately and eventually 
came into line with IMPALA’s. This indicates that Coknight performs 
better on low bandwidth networks.

5.2.3. Scalability
With the observation above, we further investigated the scala-

bility of Coknight concerning the number of actors. Since the over-
all running time of Seed-RL in Fig. 8 is less than that of Coknight, 
we compared the speed of Coknight with Seed-RL in the same 
wired network. The speed we defined means the number of infer-
ence requests served per second (req/s). The numeral results are 
shown in Fig. 11. We can find that Seed-RL is slightly faster than 
Coknight at a small scale (with less than 36 actors). The reason is 
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that Coknight needs additional bandwidth for model synchroniza-
tion between the edge server and devices. With the increase in the 
number of actors, both the performance of Seed-RL and Coknight
are declined. The difference is that Coknight has relatively shown 
better performance than Seed-RL. This observation is highly con-
sistent with our expectation that the partition strategy started to 
work, balancing the computing and bandwidth requirements of the 
increased actors. In short, Coknight shows satisfying performance 
and high scalability toward large-scale actors.

Afterward, based on the resource usage and latency data col-
lected in the physical system, we conducted a large-scale sim-
ulation experiment to validate the scalability of the algorithm. 
To measure these algorithms’ relative performance, we evaluated 
them by three indicators: 1) total latency reduction; 2) strategy 
variance; 3) latency reduction variance. Total latency reduction 
refers to the decreased time relative to running locally when all 
actors take one step, and it is our most concerned optimization 
goal. Strategies variance and reduction latency variance are used 
to measure the difference between the strategies executed by dif-
ferent actors. Remember that we aim to make all actors adopt the 
same partition as much as possible to avoid inconsistent hybrid 
models.

To simulate a real-world scenario, we compared two types of 
resource environments: 1) elastic server: resources can be elas-
tically increased, such as AWS-based edge servers; 2) non-elastic 
server: the physical machine environment whose resources are 
relatively fixed. Fig. 12 illustrates the numerical results of the sim-
ulation, and in general, the performance of the proposed algorithm 
(DEFP) is quite similar to the optimal solution (MILP) on each indi-
cator. In the case of the elastic server, the total latency reductions 
of DEFP and MILP are both increasing as the number of actors 
increasing, and can observe a clear near-linear trend. For greedy 
algorithms, the deduction is much lower than DEFP and MILP. No-
ticeably, because of the unreasonable allocation of resources by 
OGreedy and IGreedy, both tend to choose to execute locally, so the 
variance is relatively slighter than others. It’s worth noting that 
despite the approximate performance, DEFP has a minor variance 
than MILP, which is one of the features of DEFP. The same phe-
nomenon is established in the non-elastic case. What’s more, it is 
valuable that DEFP gradually achieves the same results as optimal 
solutions with constant resources. It validates our view that this 
issue is a potential game so that we can achieve the optimal solu-
tion through finite steps improvement.

6. Related work

In this section, we overview some related work from two as-
pects — distributed deep reinforcement learning and DNN infer-
ence acceleration — to show how the Coknight framework is dis-
tinct from the existing works.
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Fig. 12. In the case of elastic and non-elastic, the performance comparison between algorithms.
6.1. Distributed deep reinforcement learning

Some classic actor and learner-based Deep-RL frameworks 
such as A3C [27] are distributively deployed by decomposing the 
model into actor and learner to scale out the parallelism of the 
Deep-RL. On the downside, the off-policy introduced by their 
distributed architecture leads to a severe problem that massive 
epochs are required to converge. To address the off-policy is-
sue, Batch A2C [1] implements the synchronization mechanism by 
alternately performing the inference and training. Although this 
on-policy method improves the convergence rate, the synchroniza-
tion method does not make full use of the computation resources 
of both actors and learners, resulting in a significant delay in the 
entire system. Therefore, IMPALA [9] proposes the v-trace algo-
rithm, which makes Deep-RL converge apace with an asynchronous 
actor-learners architecture. This algorithm is also adopted in the 
proposed Coknight framework. This algorithm dramatically im-
proves the availability of the asynchronous distributed Deep-RL. 
However, the inference in IMPALA is mainly performed on the ac-
tors’ CPU, which introduces a huge latency. To fully exploit the 
superiority of the high-speed float operation on GPU, Seed-RL [10]
puts both the inference and training procedures on the GPUs for 
the speedup purpose.

Although Seed-RL seems promising, when we adopted it to 
the edge computing, it apparently lacks attention to the limited 
bandwidth and computation of the edge server. Therefore, we at-
tempted to find a way to make full use of the customized limited 
computation and bandwidth resources for the edge system, as well 
as to achieve an on-policy strategy for fast convergence guaran-
tee. Since a large amount of resource consumption in Deep-RL 
comes from the inference phase, we considered adopting the cur-
rent mainstream methods on inference acceleration to implement 
the proposed framework.
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6.2. DNN inference acceleration

There are a significant number of methods on DNN infer-
ence acceleration, such as model compression [16], model prun-
ing [11,13], model quantization [14,22], etc. The acceleration tech-
niques in these algorithms are typically achieved by modifying the 
model parameters, which violate the on-policy principle — the 
models of training and inference are expected to be consistent. 
Therefore, we leveraged the DNN partition to allocate resources 
and accelerate the inference in Coknight, which does not need to 
modify any parameters of the DNN model. Neurosurgeon [24] is 
one of the pioneering works with this technology, which is cre-
atively proposed to reduce the latency and energy consumption of 
the inference through the partition. However, Neurosurgeon can 
only deal with chain-topology DNNs and do nothing for others 
with complex structures. In contrast, ECDI [20] is presented to 
formalize the neural network structure into a DAG (direct acyclic 
graph) whereby a minimum cut-based method is proposed to find 
the optimal partition decision. Although there is a solid exploration 
in graph theory, ECDI only handles the naive two-part partition 
in the single edge and cloud manner and lacks consideration of 
multiple edges. Thus, another DINA [28] method applies parti-
tion to fog computing, distributing a task to multiple fog nodes 
and proposing a more fine-grained division of the tensors. In ad-
dition to these works, to take advantage of each other, partition 
and pruning are combined to attain inference acceleration in [33], 
which further explores the availability of the partition method.

Unfortunately, these previous works [20,28,33] do not meet the 
requirements of the proposed architecture. There are two main 
reasons: the first is that these methods are optimized for a sin-
gle task and are not applicable for the multi-tenant scenario. The 
other reason is that these methods require numerous offline itera-
tions, while the scenarios we support are dynamic and distributed. 
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Another important innovation is that all these methods apply DNN 
partition to the traditional deep learning inference stage, and we 
embed it in the Deep-RL framework. To the best of our knowledge, 
we are the first to conduct the multiple actor-learner framework 
based on the DNN partition.

7. Conclusions

In this paper we presented Coknight, a scalable and efficient 
framework for deep reinforcement learning by exploiting the DNN 
partition techniques in the edge environment. We first formu-
lated the partition problem into a variant of knapsack problem in 
device-edge setting, and showed it is NP-complete, and then trans-
formed it into a multi-player game. Next, we proved the game is 
a potential game whereby an efficient distributed algorithm is de-
veloped for fast and dynamic partitioning. Finally, we prototyped 
the Coknight framework and conducted extensive experiments to 
show its performance superiority in terms of resource efficiency 
and scalability over the selected existing works.

Coknight improves the efficiency of Deep-RL by making a 
trade-off between CPU utilization, GPU utilization, and network 
bandwidth cooperatively. This partition-based approach flexibly 
improves task efficiency and task parallelism concerning lim-
ited network bandwidth. However, although Coknight reduces 
the real-time bandwidth requirement, it transmits trajectories 
to the learner offline, resulting in massive bandwidth consump-
tion. Simultaneously, the current single learner architecture of the 
Coknight still suffers from the constrained GPU resources. To im-
prove scalability further, the designs with multi-leaner architecture 
as those in federated learning and gossip training, are worth fur-
ther studying concerning parameter aggregation. In addition, how 
to train on partitioned tensors instead of complete trajectories is 
also a focus of future works.
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