
Journal of Parallel and Distributed Computing 168 (2022) 108–119

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Towards scalable and efficient Deep-RL in edge computing:

A game-based partition approach

Hao Dai a,b, Jiashu Wu a,b, Yang Wang a,b,∗, Chengzhong Xu c

a Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
b University of Chinese Academy of Sciences, Beijing, 100049, China
c Faculty of Science and Technology, University of Macau, Taipa, Macau, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 August 2021
Received in revised form 19 April 2022
Accepted 9 June 2022
Available online 16 June 2022

Keywords:
Mobile edge computing
Deep reinforcement learning
DNN partition
Game theory

Currently, most edge-based Deep Reinforcement Learning (Deep-RL) applications have been deployed in
the edge network, however, their mainstream studies are still short of adequate considerations on its
limited compute and bandwidth resources. In this paper, we investigate the near on-policy of actions
taking in distributed Deep-RL architecture, and propose a “hybrid near on-policy” Deep-RL framework,
called Coknight, by leveraging a game-theory based DNN partition approach. We first formulate the
partition problem into a variant of knapsack problem in device-edge setting, and then transform it
into a potential game with a formal proof. Finally, we show the problem is NP-complete whereby an
efficient distributed algorithm based on the potential game theory is developed from device perspective
to achieve fast and dynamic partitioning. Coknight not only significantly improves the resource efficiency
of the Deep-RL but also allows the inference to enforce the scalability of the actor policy. We prototype
the framework with extensive experiments to validate our findings. The experimental results show that
with the premise of a rapid convergence guarantee, Coknight, compared with Seed-RL, can reduce GPU
utilization by 30% while providing large-scale scalability.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Deep reinforcement learning (Deep-RL) [39,42], which inte-
grates deep neural network (DNN) into a framework of reinforce-
ment learning (RL) to help software agents learn how to reach
their goals, has been widely deployed on various mobile or station-
ary devices, such as smartphones, wearables, smart cameras, and
other intelligent objects to provide diverse digital services [31,40].
However, given the inherent constrains in energy consumption,
chip size and compute capacity, these devices are usually SoC-
based and characterized by limited performance [18,41], which
as a result cannot fully exploit the potentials of Deep-RL. To ad-
dress these issues, cloud center is usually introduced to develop
a “cloud center + mobile device” architecture in traditional solu-
tions. However, due to their high QoS requirements, this archi-
tecture has to struggle to make the trade-offs between network
bandwidth, computation efficiency, and latency overhead for DNN-
based service acceleration. Therefore, a new type of computation

* Corresponding author at: Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen, Guangdong, 518055, China.

E-mail addresses: hao.dai@siat.ac.cn (H. Dai), js.wu@siat.ac.cn (J. Wu),
yang.wang1@siat.ac.cn (Y. Wang), czxu@um.mo.edu (C. Xu).
https://doi.org/10.1016/j.jpdc.2022.06.006
0743-7315/© 2022 Elsevier Inc. All rights reserved.
paradigm—mobile edge computing (MEC), which extends the capa-
bilities of cloud platform to the edge of the network—was widely
studied in recent years to exploit these capabilities to facilitate
various computations [6,7,21,37]. As such, given the high require-
ments on compute capacities for DNN training and inference, it
is of utmost important to conduct resource-efficient and scalable
Deep-RL based on the MEC solution [30,34].

For the performance optimization of DNN, most works focus on
reducing the computation overhead subject to the constraints on
compute resources on devices. Some current mainstream methods
typically tackle the issue via model compression [13,25], parameter
quantization [14], model pruning [11,33], model early exit [35,36],
and so on. These technologies are characterized by separating the
training and inference of deep learning into different phases and
focusing squarely on the performance optimization of the infer-
ence. In particular, the models are finely trained in servers, and
the quantization and/or pruning are performed on the pre-trained
model. Since Deep-RL implements model training through inter-
action with environments, it’s necessary to perform corresponding
actions in a certain environment to evaluate the new strategies
to be used. Thus the inference and training are interleaved and
inseparable in Deep-RL, which makes it infeasible for the above op-
timization methods to use in large-scale problem [8]. Much worse,

https://doi.org/10.1016/j.jpdc.2022.06.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.06.006&domain=pdf
mailto:hao.dai@siat.ac.cn
mailto:js.wu@siat.ac.cn
mailto:yang.wang1@siat.ac.cn
mailto:czxu@um.mo.edu
https://doi.org/10.1016/j.jpdc.2022.06.006

H. Dai, J. Wu, Y. Wang et al. Journal of Parallel and Distributed Computing 168 (2022) 108–119
the interactions with the environment (including inference and
action execution) often have high overheads, and consequently be-
come the bottleneck of the whole system.

On the other hand, given the performance gap between GPU
and CPU, the service acceleration through edge servers with GPU
tends to be a promising approach. For instance, compared with
CPU, the processing time is less than one tenth when the same
DNN inference task is executed on GPU. As such, the current main-
stream frameworks often support large-scale distributed Deep-RL
in a CPU-GPU collaborative manner, such as GA3C [3], DD-PPO [38],
IMPALA [9], Seed-RL [10], and so on. All these frameworks put the
entire training and even the entire inference on the GPU for accel-
eration and leave the interaction with the environment on the CPU.
Unfortunately, these frameworks are not designed for the edge net-
works as they lack the consideration of the limited edge resources.
Although the migration of all tasks to the edge servers is feasi-
ble, it is not cost-efficient as it would cause wastage of network
bandwidth and device computation resources, making it difficult
to scale to large-scale clusters.

To address these issues, we design and implement a scalable
and efficient Deep-RL framework, called Coknight, based on the
idea of DNN partition [20,24] with the aid of the edge network to
support intelligent applications deployed in resource-constrained
mobile devices. DNN partition is an often-used method for co-
operative inference acceleration between edge servers and mobile
devices by flexibly splitting a DNN to both sides [20,24]. However,
compared to existing partition methods which either adopt heuris-
tic methods [24,28,33] or graph-based methods [20], Coknight
bears some distinct features, which are short of adequate consider-
ations in the existing studies: 1) Coknight is fairly efficient by ac-
complishing the partition in quadratic time; 2) Coknight is highly
scalable by distributing the computation across all the devices; 3)
Coknight is fully dynamic by adapting to the changes of the num-
ber of mobile devices. Moreover, to the best of our knowledge, we
are the first to integrate the DNN partition into the Deep-RL frame-
work to accelerate the model training.

We design Coknight to achieve these features by overcoming
the demerits of both IMPALA [9] and Seed-RL [10], two typical
Deep-RL architectures designed for edge computing. To this end,
we first formulate the partition problem into a variant of knapsack
problem [19,26] in the device-edge setting, and then transform
the problem into a multi-player game and prove it is a potential
game. Finally, we show the problem is NP-complete whereby an
efficient distributed algorithm based on the potential game theory
is developed from device perspective to achieve fast and dynamic
partitioning [5,17,23]. With Coknight, we can not only significantly
improve the resource efficiency of the Deep-RL but also allow the
inference to enforce the scalability of the actor policy. We pro-
totype the framework with extensive experiments to validate our
findings.

In summary, we make the following contributions:

• We design a collaborative large-scale actor-learner framework,
called Coknight, that integrates DNN partition with Deep-RL to
jointly accomplish the model inference between mobile device
and edge server. We thus achieve a concept of “hybrid near
on-policy” that can improve the resource efficiency and the
parallelism of multiple actors with a rapid convergence guar-
antee.

• We formulate the partition problem into a variant of knap-
sack problem in the device-edge settings and prove its NP-
Completeness. Then we transform the problem into a multi-
player game and prove it is a potential game. According to
the proofs, we further design a dynamic distributed algorithm
with time complexity of O (K2N 2) for the DNN partition
109
Fig. 1. The architecture of IMPALA (a) and the off-policy model of IMPALA (b). Data
(model parameters and trajectories) transmission between the actor and the learner
is asynchronous and timing.

problem in Coknight, where K is the number of layers of DNN
and N is the number of devices.

• We implement the Coknight framework and conduct extensive
experiments on Atari Games [12] and a large-scale simulation
study to validate its scalability and efficiency.

The remainder of the paper is organized as follows. Section 2
introduces the background and the motivation of our work. After
that, we go through the architecture of Coknight detailed in Sec-
tion 3 and cover its dynamic partition algorithm in Section 4. We
present the experimental results in Section 5 and discuss some re-
lated works in Section 6, which is followed by the conclusion in
Section 7.

2. Background and motivation

In this section, we introduce some classic Deep-RL frameworks
that inspire our proposed method. Most Deep-RL methods in the
early era usually work in a simulator-based environment. Thus
early Deep-RL operates in a synchronized single-agent architec-
ture in the “online policy” manner, in which the agent leverages
the latest trained policy to take action. In such architecture, the
model can converge apace with few interactions. However, this
single-agent design can barely scale out as a large amount of data
training incurs significant overheads, compromising its overall per-
formance.

To this end, a more general asynchronous architecture – actor-
learner architecture – has been extensively used [2,32]. As opposed
to the single-agent architecture, in this architecture, two agents are
employed to work asynchronously – an actor is responsible for in-
teracting with the environment and generating trajectories, while
a learner conducts model training by updating the policy based
on the generated trajectories. This so-called “off-policy” method
dramatically improves the parallelism of the agents, which in turn
boosts the efficiency of the Deep-RL. However, the convergence of
this method is affected by the frequency of the model updates,
which could require a large number of communication resources
for the trajectories and parameter transmissions.

IMPALA. As shown in Fig. 1(a), IMPALA [9] is a typical actor-
learner architecture where the model training and inference occur
in the learner and the actor, respectively. With an asynchronous
inference mechanism, IMPALA can be easily scaled out. However,

H. Dai, J. Wu, Y. Wang et al. Journal of Parallel and Distributed Computing 168 (2022) 108–119
Fig. 2. Comparison of multiple classic models inference time on different CPU/GPU.

Fig. 3. The architecture of Seed-RL (a) and the “near on-policy” of Seed-RL (b). Data
(observations and actions) transmission between actor and learner is synchronous
and real-time.

its shortcomings are also obvious: 1) the latency of CPU and GPU
presents an order of magnitude gap, as shown in Fig. 2, and thus
IMPALA cannot effectively benefit from the GPUs in the learner; 2)
the adopted off-policy method usually leads to a large number of
epochs when training Deep-RL model, as shown in Fig. 1(b).

Seed-RL. To overcome these shortcomings, researchers pro-
posed another framework called Seed-RL [10]. As shown in Fig. 3(a),
both the inference and training of Seed-RL work in the learner,
making full use of GPU to accelerate the entire Deep-RL training
process. Meanwhile, as illustrated in Fig. 3(b), all the inferences
in Seed-RL are performed using the same DNN parameters in the
learner, resulting in a so-called near on-policy which converges
within fewer epochs than IMPALA. Seed-RL bears some similarities
with synchronous training methods because of the concentrated
computations and the parallel environment. Thus, it is very effi-
cient when using a simulator for training in the cloud center.

Motivation. Unfortunately, when we tried to adopt Seed-RL in
the edge network, we found some crucial issues: 1) bandwidth
resources in the edge network are always scarce, and the observa-
tion data are usually low-dimensional and redundant (e.g., images
and voices), which could result in a high cost in data uploads; 2)
110
Fig. 4. In a typical edge computing architecture, multiple devices are connected to a
specific edge server.

all the computations are performed in the learner, which requires
massive computation resources on the edge server and becomes
bottleneck-prone.

Since IMPALA and Seed-RL have troubles in resource inefficiency
and weak scalability, respectively, we intend to combine their
advantages to address these issues. With the guarantee of con-
vergence efficiency, we can schedule computational tasks in an
adaptive way based on the available compute and communication
resources to improve the parallelism of actors and the resource
efficiency of the edge servers. We will provide details of the ap-
proach in the next section.

3. Coknight and DNN partition

This section introduces the design details of our proposed
actor-learner framework, Coknight, focusing on a formal descrip-
tion of the DNN partition problem inside.

3.1. Architecture overview

As illustrated in Fig. 4, a MEC network consists of an edge server
and a set D = {d1, d2, ..., dN } of N devices. Devices communicate
with the edge server over WiFi, 5G, or dedicated links. The edge
server has certain resource constraints, including compute capacity,
bandwidth, etc. Let Rc and Rb be the total amount of the edge
server’s computation and bandwidth resources, respectively. With
this model, we intend to formalize a DNN as a set of tasks that
consume computation and bandwidth resources, and allocate them
between devices and servers.

Fig. 5(a) is an example of an image classification neural network
composed of a total of 11 layers. The type and scale of calculation
for each layer are marked on the figure, including 9 3 × 3-CNN
layers and 2 FC layers. In fact, all DNNs can be formulated into
a similar architecture, with each layer performing a correspond-
ing tensor calculation and exporting the results to the next layer
of the network. Since the essence of DNN inference is a forward
calculation with input tensors, the computation of each layer is
proportional to the scale of input tensors. We can measure the
calculation of each layer using the number of floating-point oper-
ations (FLOPs) [29].

We can define a K-layer DNN as a sequence L = (l1, l2, ..., lK),
lk represents the kth layer of the neural network. Let ck denote the
FLOPs of lk , which is a function taking tensor size as input. Indeed,
the FLOPs are associated with not only the input tensor size but
also the type of layer. The details of the formula calculation for
FLOPs can be found in [29]. In short, for a certain DNN, the amount

H. Dai, J. Wu, Y. Wang et al. Journal of Parallel and Distributed Computing 168 (2022) 108–119

Fig. 5. An example of a deep neural network (a) and a DNN partition between device and edge server (b).
of computation under the same input scale C can be calculated as
follows:

C =
K∑

k=1

ck (1)

It is worth noting that the input tensor of each layer is prede-
fined in the DNN, that is, the transmission of the network can also
be portrayed in advance. Therefore, we can reduce resource con-
sumption by partitioning the DNN between the edge server and
the device. Meanwhile, since the computing speed of the edge
server is faster than that of the device, we can accelerate the
inference by offloading part of the task from the device to the
edge server. As illustrated in Fig. 5(b), the 11-layer DNN is par-
titioned into two parts. The first four layers are executed on the
device, and the output tensors are transferred to the edge server,
where the remaining seven layers are calculated. After the infer-
ence task is complete, the edge server sends results back to the
device side.

Since the output tensor of the hidden layer is generally smaller
than the raw data in most DNNs, the benefits of partition are
not only reducing the computation overhead but also minimizing
the bandwidth consumption, which means a trade-off between the
computation and communication. As shown in Fig. 6(a), an appro-
priate partition would benefit the overall inference time when the
network bandwidth is sufficient. It can fully exploit the bandwidth
to achieve equivalent performance to inference on GPU. In contrast,
111
in the case of a low-bandwidth network environment, since only
tensors of the hidden layer are sent to the edge server, the par-
tition approach is even better than putting all the layers on the
edge server, as shown in Fig. 6(b). We leverage DNN partition in
the proposed framework “Coknight” to attain resource efficiency,
scalability, and latency reduction.

The design of the Coknight framework is shown in Fig. 7(a). The
main difference between Coknight and IMPALA&Seed-RL is that the
inference task is not accomplished in a single site, rather, it is exe-
cuted cooperatively between the actor and the learner through the
partition. In such a way, we can achieve acceleration by striking a
balance between reducing computation on low-speed devices and
minimizing network bandwidth consumption.

Meanwhile, the policy of the action taken in Coknight is also
noteworthy. As shown in Fig. 7(b), in an inference task, the shal-
low network may use the outdated model parameters while the
deeper network leverages the latest parameters. Note that the ac-
tion a selected by the original strategy π(θ t) based on observation
s is:

a = π(s, [θ0
t , θ1

t , θ2
t , θ3

t , ..., θk
t]) (2)

while the action selected by the new strategy in Coknight is:

a′ = π(s, [θ0
t , θ1

t , θ2
t , θ3

t+1, ..., θ
k
t+1]). (3)

We call this strategy “hybrid near on-policy”. Since the shallow net-
work is usually composed of some networks whose parameters are

H. Dai, J. Wu, Y. Wang et al. Journal of Parallel and Distributed Computing 168 (2022) 108–119

Fig. 6. Inference time distribution with different partition layers.
Fig. 7. The architecture of Coknight (a) and the “hybrid near on-policy” of Coknight
(b). Layer outputs and actions transmission between actor and learner are syn-
chronous and real-time, while the parameter and trajectories are asynchronous and
timing.

relatively stable during the training (e.g., CNN), it is reasonable to
consider that the inference model in Coknight is similar to that in
Seed-RL.

It is worth noting that in a general case when resources are
sufficient resources as in Seed-RL, Coknight tends to perform the
inference tasks on the learner. Only when resource bottlenecks
occur will Coknight perform the partition on some devices. For
those partitioned devices, we need to upload both intermediate
tensor data and regular observation data to the edge server for
model updates. Meanwhile, it is unnecessary to pay attention to
the model and trajectory upload issues in those non-partitioned
devices (all the layers are on the server). Therefore, the bandwidth
consumption of Coknight will not increase exponentially compared
to Seed-RL, since this upload operation is usually performed at a
relatively low frequency.

With an appropriate partition of the DNN layers, Coknight can
execute the front part of the DNN inference on devices and up-
load the rest to the edge server to complete the task. Hence, a
crucial issue of Coknight is how to find the optimal partition of the
network for each device actor, which is formally analyzed in the
sequel.
112
3.2. Partition problem formulation

More generally, we assume a K-layer DNN, and leverage a vari-
able yi(0 ≤ yi ≤K) to indicate that the DNN is partitioned on yi th
layer on device di (i.e., actor i). Let yi = 0 denote that the entire
DNN model is executed on the edge server, while yi = K repre-
sents that the whole DNN model is calculated on the device.

Let Cd(yi) and Ce(yi) denote FLOPs calculated on the device
and the edge server (i.e., learner) with decision yi , respectively,
which can be formulated as the follows.

Cd(yi) =
yi∑

k=1

ck; Ce(yi) =
K∑

k=yi+1

ck (4)

We adopt floating-point operations per second (FLOPS) [29] to
characterize the performance of devices and edge servers. We de-
note the FLOPS of the edge server as fe . Since the devices are
diverse, we use f i

d to represent the FLOPS of the device di . There-
fore, the calculation time of a partition task on device di and on
the edge server are represented by ti

d(yi) and ti
e(yi), respectively,

and can be calculated as follows:

ti
d(yi) = Cd(yi)

f i
d

; ti
e(yi) = Ce(yi)

fe
(5)

In addition to the calculation time, we also need to pay atten-
tion to the data transmission time, which is proportional to the
output tensor size of each layer, which is denoted as bk(0 ≤ k ≤K),
where b0 represents the input tensor size, and bK is the output
tensor size. Suppose the transmission cost per unit tensor of each
link is the same, denoted as tr, the transmission time is then the
ratio of bk and tr. In summary, the total response time Ti(yi) of a
partition task on di can be formulated as follows:

Ti(yi) =

⎧⎪⎨
⎪⎩

ti
e(yi) + b0+bK

tr yi = 0

ti
d(yi) + ti

e(yi) + byi +bK
tr 1 ≤ yi ≤ K − 1

ti
d(yi) yi = K

(6)

Obviously, when the resources (both compute and bandwidth) are
not limited, there will be an optimal partition that can minimize
the response time of the entire task.

y∗
i = arg min

yi∈{0,1,...,K}
(Ti(yi)). (7)

Here, y∗
i is the optimal partition decision that minimizes the re-

sponse time.

H. Dai, J. Wu, Y. Wang et al. Journal of Parallel and Distributed Computing 168 (2022) 108–119
It is reasonable to suppose that a device could perform a se-
ries of DNN inference tasks for the long term in Deep-RL. Such
workloads consist of continuous tasks with the same input size
and model. Therefore, from the perspective of computational load,
we can treat the series of tasks as a whole task W , consuming
the same computation and communication resources continuously.
For such an ongoing task W , the resources allocated by the edge
server to the device are monopolized, once these resources are ear-
marked for di , they would not be shared or conflicted with other
devices.

Our goal is to minimize the latency of all the devices, that is, to
reduce Ti(yi) of all the devices. This problem can be modeled as a
constrained optimization problem (COP) as follows:

minimize
N∑

i=1

Ti(yi) (8)

subject to:

0 ≤ yi ≤ K (9)
N∑
i

Ce(yi) ≤Rc (10)

N∑
i

δbyi ≤Rb. (11)

Here, δ is a proportional coefficient between the size of the tensor
and the bandwidth it consumes. Based on the formulation of the
multi-actor DNN partition problem, we will analyze its property
and design the corresponding algorithm in the next section.

4. DNN partition algorithm design

Given the problem definition, in this section, we first conduct
its complexity analysis in Coknight, thereby deriving an efficient
algorithm based on the potential game theory [17].

4.1. Problem complexity

Firstly, we analyze the hardness of the problem to determine
whether a polynomial-time optimal algorithm could be designed.

Theorem 1. The multi-actor DNN partition (MADP) problem we formal-
ized is NP-complete.

Proof. First, this problem is apparently in NP as any solution to its
decision form can be validated in polynomial time. Then, we con-
duct a reduction from MADP to the classical NP-complete knapsack
problem (KP) [19,26] in polynomial time, to show the hardness of
MADP.

Given an instance of KP whose definition is as follows:

maximize
n∑

i=1

xi vi (12)

subject to:

n∑
i=1

xi wi ≤ C (13)

xi = {0,1};1 ≤ i ≤ n (14)

For the reduction purposes, we transform the original min-
imization of MADP into an equivalent maximization goal. We
intend to minimize the task inference time on each device by
113
controlling the partition layer, that is, to maximize the benefits
brought by the partition.

Through the observation, we can find that when the task is ex-
ecuted locally on the device, the constrained server computation
and bandwidth are not consumed. Therefore, we design a utility
function ui for device di based on yi =K:

ui(yi) = Ti(yi) − Ti(K);0 ≤ yi ≤ K,1 ≤ i ≤ N (15)

We let a decision variable xij = {0, 1} indicates whether the de-
vice di decides to perform the j-th partition. Since each device
can only choose one partition layer, we need to make the follow-
ing constraints on xij :

K∑
j=0

xij ≤ 1 (16)

Combining with the formulas above, the equivalent maximization
problem can be formalized as follows:

maximize
N∑

i=1

K∑
j=0

xijui(j) (17)

subject to:

K∑
j=0

xij ≤ 1 (18)

N∑
i=1

K∑
j=0

xijCe(j) ≤Rc (19)

N∑
i=1

K∑
j=0

xijδb j ≤ Rb (20)

xij = {0,1};0 ≤ j ≤ K,1 ≤ i ≤ N (21)

According to this formulation, we introduce how to construct
an instance of MADP to handle any KP problem. Let N := n,
Rc := C and Rb := +∞, we can align the constraints with KP.
Then we let xi0 := vi , and add a dummy item xi1 := 0. With this
trivial transformation, it is obvious that any inputs of KP can be
adopted to MADP. That is, the MADP solution can be used to solve
KP. Correspondingly, any KP solution can also solve a particular
form of MADP. To sum up, the multi-actor partition problem can
be confirmed NP-complete.

4.2. Dynamic algorithm

Although many algorithms (e.g., branch and bound method,
greedy, etc.) are designed for such an NP-complete problem, con-
sidering the devices would gradually enter or leave the edge net-
work, we intend to develop an algorithm handling the dynamic
increase and decrease of devices. For this purpose, we adopt game
theory in the algorithm design.

Firstly, we formalize this problem as a game:

G =< �N , (Si)i∈ �N , (ui)i∈ �N > (22)

here, �N represents a set of N players; Si denotes the strategy
set of each player i, which is the same as {yi | 0 ≤ yi ≤ K} in
the partition problem; ui is the utility function of each player,
consistent with its definition in Eq. (15), combined with resource
constraints additionally. We suppose every player is selfish and in-
tends to maximize its utility function ui . And we will prove that
Pure Nash Equilibrium (PNE) exists in G so that a concise and effi-
cient local search algorithm could be adopted.

H. Dai, J. Wu, Y. Wang et al. Journal of Parallel and Distributed Computing 168 (2022) 108–119
Theorem 2. The game G is an exact potential game.

Proof. Assuming there is a global utility function �, which indi-
cates the time reduction of the entire system compared with the
latency that all devices inference locally. Let si denote the strategy
chosen by player i, and s−i represent the strategy selected by other
players except i. Given a set of player strategies �S = {s1, s2, ..., sN },
the definition of � is as follows:

�(�S) =
∑

i∈�S
ui(si). (23)

When player i changes its own strategy from si to s′
i , and other

players’ strategies remain s−i , there is the following equation:

ui(si, s−i)−ui(s′
i, s−i) = �(si, s−i) − �(s′

i, s−i);
∀si, s′

i ∈ Si, s−i ∈ S−i .
(24)

Thus, G is a potential game with the potential function �, and
hence always admits PNE in finite improvements.

Since there exists PNE in the G, we can attain the PNE through
finite steps of improvement. Hence, the heuristic algorithm can
theoretically achieve the optimal after a limited number of it-
erations. However, what we need is a dynamic polynomial-time
algorithm so that devices can participate in the system fleetly. Ap-
parently, heuristic algorithms cannot meet our requirements.

Consequently, an intuitive, dynamic and efficient algorithm is
that player i calculates its best response according to the strategy
already selected by other players, that is:

s∗
i = arg max

si∈Si

u(si, s−i). (25)

It is a straightforward greedy algorithm, which we named “incre-
mental greedy algorithm.” The algorithm has high computational
efficiency with an unsatisfactory approximation ratio. Besides, ac-
cording to the principle of “hybrid near on-policy,” we prefer to
keep the same partition strategy for different actors to leverage
the same hybrid model for inference, thus accelerating the conver-
gence of training.

To this end, we design a resource fairness algorithm named
“dynamic efficient fairness partition algorithm,” which intends to
make all actors carry out resource competition equally. The ba-
sic idea is that the newly added actor forms a pair with every
actor who has already participated in Coknight, and performs the
Pareto Improvement in duos. The whole algorithm is shown in Al-
gorithm 1.

On the one hand, DEFP is an incremental algorithm apparently.
Moreover, this algorithm could be decremental because it can han-
dle the release of resources when the device goes offline, simply by
selecting a player to re-execute the algorithm. On the other hand,
DEFP is a fair algorithm for all devices since each player has made
Pareto Improvement with other players pairwise to compete for re-
sources fairly. Thus, the algorithm can work in a distributed man-
ner, with each actor communicating directly with another actor to
compete for resources. Furthermore, DEFP is a polynomial-time al-
gorithm, and we will give an approximate time complexity analysis
of Algorithm 1 as follows:

Theorem 3. Given the N -players and K-strategies in game G, the time
complexity of DEFP is upper bounded by O (K2N 2).

Proof. Firstly, the complexity of the best response in Eq. (25) is
roughly O (K) (line 6). And the number of strategies in SN is K,
hence the complexity of lines 5 − 12 is O (K2).
114
Algorithm 1: Dynamic Efficient Fairness Partition (DEFP) al-
gorithm.

Input: S(s1, s2, ..., sN−1): A set of strategies that players {1, 2, ..., N − 1}
have adopted;

SN : A set of available strategies of player N ;
Output: S(s1, s2, ..., sN): A set of strategies that players {1, 2, ..., N } have

adopted
1 for (player i, si) in S(s1, s2, ..., sN−1) do

/* Pair Pareto Improvement */
2 utility_of_pair_i_n ← 0;
3 available_resource ← the sum of resources occupied by player i and

player N ;
4 stemp

i , stemp
N ← the strategy of on-device computing independently;

5 for s j
N in SN do
/* Best Response */

6 s∗
i ← calculate the best response for player i based on Eq. (25);
/* Pareto Improvement */

7 if ui(s∗
i) + uN (s j) ≥ utility_of_pair_i_n then

8 utility_of_pair_i_n ← ui(s∗
i) + uN (s j);

9 stemp
i ← s∗

i ;

10 stemp
N ← s j

N ;
11 end
12 end

/* update players strategy */

13 si ← stemp
i ;

14 sN ← stemp
N ;

15 end

Since it is necessary to traverse all the players to form pairs
(line 1), the complexity of running the DEFP algorithm once is
O (K2N). For N players, it is necessary to repeat the DEFP algo-
rithm N times to construct the final strategy set. To sum up, the
total complexity of solving N -players and K-strategies problem is
O (K2N 2).

5. Performance studies

To validate our findings, we implemented Coknight based on Py-
Torch and gRPC to evaluate its performance. Firstly, we constructed
a small-scale physical testbed to validate the model convergence.
Afterward, we conducted a large-scale simulation based on physi-
cal test data to validate the scalability and efficiency. The simulator
efficiently implemented the proposed algorithms and the model
upon which the algorithms are built.

5.1. Experimental setup

By following the settings of IMPALA [9], we implemented the V-
trace algorithm and conducted experiments on the Atari suite [4].
Besides, we also took the hyper-parameters and optimization pro-
cedures from [9].

Datasets: We took the Atari games as the test environments.
The size of each frame in games is 3 × 84 × 84. And we aggregated
the reward of the game as part of the input, so the input tensor
shape should be 4 × 84 × 84. Our goal is to maximize the game’s
final score, which is reflected in the cumulative sum of all rewards
in one round of the game.

Baselines: As for physical experiments, we treated IMPALA [9]
and Seed-RL [10] as baselines. Both methods are variations imple-
mented based on Coknight (yi = 0 or yi = K). Hence the per-
formance is marginal different from the original version, but the
overall architecture is the same. Each set of experiments would
train 6, 000, 000 steps to obtain stable scores.

And for the simulation comparison of DEFP algorithm, we eval-
uated it against mixed integer linear programming (MILP, i.e., opti-
mal solution, obtained by the solver), incremental greedy (IGreedy),
and offline greedy (OGreedy) as baselines. We make a scalability
analysis of the algorithm concerning the number of actors.

H. Dai, J. Wu, Y. Wang et al. Journal of Parallel and Distributed Computing 168 (2022) 108–119

Fig. 8. Performance comparison of the three frameworks. The figure from left to right is the convergence rate, convergence time, and running time, respectively.
Evaluation Platform: The experiments were conducted with
Python 3.7.9, Pytorch 1.7.1, gRPC 1.32.0 and gym 0.18.0. As for
the hardware of the platform, we performed experiments in three
types of heterogeneous edge devices similar to [15]. We took 1×
Tesla-V100 32G as an edge server (learner), as well as 4 × 40 cores
Intel(R) Xeon(R) E5-2630 v4 @2.20 GHz servers and Raspberry
Pi 4B as the mobile devices (actors). In addition, we leveraged
switches to build a wired edge network. We deployed Coknight’s
actors on CPU (Intel/ARM) servers, while the leaner was deployed
on the GPU server, with peer-to-peer communication to Actors via
gRPC. In the initial phase, each actor will run the partition al-
gorithm to establish communication with leaner. In addition, to
validate the performance of Coknight in the edge network, we con-
strained the bandwidth of the subnetwork through switches.

5.2. Numerical results

We investigated an empirical experiment to validate the con-
vergence and resource efficiency of Coknight, IMPALA and Seed-RL
at first. After that, we compared the scalability of Coknight and
Seed-RL by varying the number of actors. All methods adopted the
same hyper-parameters, including the number of actors, batch size,
buffer size, learning rate, etc. To make Coknight execute the parti-
tion strategy, we limit the network bandwidth of Coknight to 10
MB/s, which is a practical setting as most real-life WiFi. Further-
more, we provided a large-scale simulation to validate the scala-
bility of the proposed DNN partition algorithm.

5.2.1. Convergence efficiency
Firstly, we studied the impact on convergence rate and to-

tal running time between Coknight and other frameworks in two
different game experiments: SpaceInvaders and MsPacman. Fig. 8
illustrates the performance comparison of the three frameworks
with the same number of actors (n = 12). Regarding the conver-
115
gence rate (left figure), we can find that due to the impact of the
off-policy, IMPALA obtains the lowest score in the same step (i.e.,
convergence rate). It is worth noting that the score of Coknight is
slightly higher than that of Seed-RL. We speculate that the shal-
low network of the hybrid near on-policy remains relatively sta-
ble, which leads to a particular regularization effect on the model
and improves its reward. Meanwhile, as shown in Fig. 8 on the
right, driving the same number of actors in an experimental en-
vironment with almost unlimited network bandwidth, Coknight’s
running time is slightly lower than Seed-RL while still significantly
improves compared to IMPALA. Combining these two results, we
can find from the central figures that Coknight can obtain scores
equivalent to Seed-RL when running after the same time. What’s
more, in MsPacman Game, we found that the reward of Coknight
surpasses that of Seed-RL. These results actually indicate that the
hybrid model in Coknight is relatively more robust.

5.2.2. Resource efficiency
Further, we focused on the resource usage of the learner dur-

ing the entire system running time, including GPU usage, memory
usage, and bandwidth usage. We monitored the usage of resources
during the entire training process and made statistics on the re-
source utilization in each period. The numerical results are illus-
trated in Fig. 9, and the X-axis is the utilization ratio of resources,
such as GPU utilization and bandwidth. While the Y-axis is the
density distribution of statistics, the larger it is, the longer the
resource utilization remains at the corresponding x value during
training. As shown in the diagrams of Fig. 9, the GPU utilization
of Coknight is significantly reduced to approximately 60%, while
Seed-RL requires more than 90%. In another word, Coknight saves
around 30% of GPU utilization than Seed-RL, with almost the same
performance guarantee. What needs to be explained is that the re-
duced part of the computation is not evaporated but allocated to
actors’ CPUs. Another concern is that the bandwidth consumption

H. Dai, J. Wu, Y. Wang et al. Journal of Parallel and Distributed Computing 168 (2022) 108–119

Fig. 9. The resource usage of the learner. From left to right are GPU usage, memory usage, and bandwidth consumption.
Fig. 10. How the performance of baselines varies with the bandwidth constraint.

Fig. 11. How the performance of Coknight and Seed-RL is relatively changed concern-
ing the number of actors.

of Seed-RL is proximate 12 MB/s. If the bandwidth of Seed-RL is
limited to 10 MB/s following Coknight, it is reasonable to believe
that the performance will decrease moderately. To further study
the impact of bandwidth on performance, we changed the number
of actors to 6 and then varied the bandwidth constraint from 50
MB to 2 MB through switches. The baselines performance varying
with different bandwidths are shown in Fig. 10. It is worth noting
that Seed-RL’s performance declined significantly as bandwidth de-
creased, while Coknight’s declined more moderately and eventually
came into line with IMPALA’s. This indicates that Coknight performs
better on low bandwidth networks.

5.2.3. Scalability
With the observation above, we further investigated the scala-

bility of Coknight concerning the number of actors. Since the over-
all running time of Seed-RL in Fig. 8 is less than that of Coknight,
we compared the speed of Coknight with Seed-RL in the same
wired network. The speed we defined means the number of infer-
ence requests served per second (req/s). The numeral results are
shown in Fig. 11. We can find that Seed-RL is slightly faster than
Coknight at a small scale (with less than 36 actors). The reason is
116
that Coknight needs additional bandwidth for model synchroniza-
tion between the edge server and devices. With the increase in the
number of actors, both the performance of Seed-RL and Coknight
are declined. The difference is that Coknight has relatively shown
better performance than Seed-RL. This observation is highly con-
sistent with our expectation that the partition strategy started to
work, balancing the computing and bandwidth requirements of the
increased actors. In short, Coknight shows satisfying performance
and high scalability toward large-scale actors.

Afterward, based on the resource usage and latency data col-
lected in the physical system, we conducted a large-scale sim-
ulation experiment to validate the scalability of the algorithm.
To measure these algorithms’ relative performance, we evaluated
them by three indicators: 1) total latency reduction; 2) strategy
variance; 3) latency reduction variance. Total latency reduction
refers to the decreased time relative to running locally when all
actors take one step, and it is our most concerned optimization
goal. Strategies variance and reduction latency variance are used
to measure the difference between the strategies executed by dif-
ferent actors. Remember that we aim to make all actors adopt the
same partition as much as possible to avoid inconsistent hybrid
models.

To simulate a real-world scenario, we compared two types of
resource environments: 1) elastic server: resources can be elas-
tically increased, such as AWS-based edge servers; 2) non-elastic
server: the physical machine environment whose resources are
relatively fixed. Fig. 12 illustrates the numerical results of the sim-
ulation, and in general, the performance of the proposed algorithm
(DEFP) is quite similar to the optimal solution (MILP) on each indi-
cator. In the case of the elastic server, the total latency reductions
of DEFP and MILP are both increasing as the number of actors
increasing, and can observe a clear near-linear trend. For greedy
algorithms, the deduction is much lower than DEFP and MILP. No-
ticeably, because of the unreasonable allocation of resources by
OGreedy and IGreedy, both tend to choose to execute locally, so the
variance is relatively slighter than others. It’s worth noting that
despite the approximate performance, DEFP has a minor variance
than MILP, which is one of the features of DEFP. The same phe-
nomenon is established in the non-elastic case. What’s more, it is
valuable that DEFP gradually achieves the same results as optimal
solutions with constant resources. It validates our view that this
issue is a potential game so that we can achieve the optimal solu-
tion through finite steps improvement.

6. Related work

In this section, we overview some related work from two as-
pects — distributed deep reinforcement learning and DNN infer-
ence acceleration — to show how the Coknight framework is dis-
tinct from the existing works.

H. Dai, J. Wu, Y. Wang et al. Journal of Parallel and Distributed Computing 168 (2022) 108–119

Fig. 12. In the case of elastic and non-elastic, the performance comparison between algorithms.
6.1. Distributed deep reinforcement learning

Some classic actor and learner-based Deep-RL frameworks
such as A3C [27] are distributively deployed by decomposing the
model into actor and learner to scale out the parallelism of the
Deep-RL. On the downside, the off-policy introduced by their
distributed architecture leads to a severe problem that massive
epochs are required to converge. To address the off-policy is-
sue, Batch A2C [1] implements the synchronization mechanism by
alternately performing the inference and training. Although this
on-policy method improves the convergence rate, the synchroniza-
tion method does not make full use of the computation resources
of both actors and learners, resulting in a significant delay in the
entire system. Therefore, IMPALA [9] proposes the v-trace algo-
rithm, which makes Deep-RL converge apace with an asynchronous
actor-learners architecture. This algorithm is also adopted in the
proposed Coknight framework. This algorithm dramatically im-
proves the availability of the asynchronous distributed Deep-RL.
However, the inference in IMPALA is mainly performed on the ac-
tors’ CPU, which introduces a huge latency. To fully exploit the
superiority of the high-speed float operation on GPU, Seed-RL [10]
puts both the inference and training procedures on the GPUs for
the speedup purpose.

Although Seed-RL seems promising, when we adopted it to
the edge computing, it apparently lacks attention to the limited
bandwidth and computation of the edge server. Therefore, we at-
tempted to find a way to make full use of the customized limited
computation and bandwidth resources for the edge system, as well
as to achieve an on-policy strategy for fast convergence guaran-
tee. Since a large amount of resource consumption in Deep-RL
comes from the inference phase, we considered adopting the cur-
rent mainstream methods on inference acceleration to implement
the proposed framework.
117
6.2. DNN inference acceleration

There are a significant number of methods on DNN infer-
ence acceleration, such as model compression [16], model prun-
ing [11,13], model quantization [14,22], etc. The acceleration tech-
niques in these algorithms are typically achieved by modifying the
model parameters, which violate the on-policy principle — the
models of training and inference are expected to be consistent.
Therefore, we leveraged the DNN partition to allocate resources
and accelerate the inference in Coknight, which does not need to
modify any parameters of the DNN model. Neurosurgeon [24] is
one of the pioneering works with this technology, which is cre-
atively proposed to reduce the latency and energy consumption of
the inference through the partition. However, Neurosurgeon can
only deal with chain-topology DNNs and do nothing for others
with complex structures. In contrast, ECDI [20] is presented to
formalize the neural network structure into a DAG (direct acyclic
graph) whereby a minimum cut-based method is proposed to find
the optimal partition decision. Although there is a solid exploration
in graph theory, ECDI only handles the naive two-part partition
in the single edge and cloud manner and lacks consideration of
multiple edges. Thus, another DINA [28] method applies parti-
tion to fog computing, distributing a task to multiple fog nodes
and proposing a more fine-grained division of the tensors. In ad-
dition to these works, to take advantage of each other, partition
and pruning are combined to attain inference acceleration in [33],
which further explores the availability of the partition method.

Unfortunately, these previous works [20,28,33] do not meet the
requirements of the proposed architecture. There are two main
reasons: the first is that these methods are optimized for a sin-
gle task and are not applicable for the multi-tenant scenario. The
other reason is that these methods require numerous offline itera-
tions, while the scenarios we support are dynamic and distributed.

H. Dai, J. Wu, Y. Wang et al. Journal of Parallel and Distributed Computing 168 (2022) 108–119
Another important innovation is that all these methods apply DNN
partition to the traditional deep learning inference stage, and we
embed it in the Deep-RL framework. To the best of our knowledge,
we are the first to conduct the multiple actor-learner framework
based on the DNN partition.

7. Conclusions

In this paper we presented Coknight, a scalable and efficient
framework for deep reinforcement learning by exploiting the DNN
partition techniques in the edge environment. We first formu-
lated the partition problem into a variant of knapsack problem in
device-edge setting, and showed it is NP-complete, and then trans-
formed it into a multi-player game. Next, we proved the game is
a potential game whereby an efficient distributed algorithm is de-
veloped for fast and dynamic partitioning. Finally, we prototyped
the Coknight framework and conducted extensive experiments to
show its performance superiority in terms of resource efficiency
and scalability over the selected existing works.

Coknight improves the efficiency of Deep-RL by making a
trade-off between CPU utilization, GPU utilization, and network
bandwidth cooperatively. This partition-based approach flexibly
improves task efficiency and task parallelism concerning lim-
ited network bandwidth. However, although Coknight reduces
the real-time bandwidth requirement, it transmits trajectories
to the learner offline, resulting in massive bandwidth consump-
tion. Simultaneously, the current single learner architecture of the
Coknight still suffers from the constrained GPU resources. To im-
prove scalability further, the designs with multi-leaner architecture
as those in federated learning and gossip training, are worth fur-
ther studying concerning parameter aggregation. In addition, how
to train on partitioned tensors instead of complete trajectories is
also a focus of future works.

CRediT authorship contribution statement

Hao Dai and Jiashu Wu conceived of the presented idea. Yang
Wang developed the theory and performed the computations.
Chengzhong Xu verified the analytical methods and supervised the
findings of this work. Hao Dai developed the prototype, and Jiashu
Wu carried out the experiments. Hao Dai wrote the manuscript
with support from Yang Wang and Chengzhong Xu. All authors dis-
cussed the results and contributed to the final manuscript.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by Key-Area Research and
Development Program of Guangdong Province (2020B010164002),
Science and Technology Development Fund of Macao S.A.R (FDCT)
under number 0015/2019/AKP, and National Natural Science Foun-
dation of China (61672513).

References

[1] C. Alfredo, C. Humberto, C. Arjun, Efficient parallel methods for deep reinforce-
ment learning, in: RLDM, 2017, pp. 1–6.

[2] M. Assran, J. Romoff, N. Ballas, J. Pineau, M. Rabbat, Gossip-based actor-learner
architectures for deep reinforcement learning, in: NeurIPS, 2019.

[3] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, J. Kautz, GA3C: GPU-based A3C
for Deep Reinforcement Learning, Technical Report, 2019.

[4] M.G. Bellemare, Y. Naddaf, J. Veness, M. Bowling, The arcade learning environ-
ment: an evaluation platform for general agents, J. Artif. Intell. Res. (2013).
118
[5] A. Boukerche, S. Guan, R.E.D. Grande, Sustainable offloading in mobile cloud
computing, ACM Comput. Surv. 52 (2019) 1–37.

[6] J. Chen, X. Ran, Deep learning with edge computing: a review, Proc. IEEE 107
(2019).

[7] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra, M. Pavone, S. Katti,
Cellular network traffic scheduling with deep reinforcement learning, in: AAAI,
2018, pp. 766–774.

[8] S. Dalton, I. Frosio, M. Garland, Accelerating Reinforcement Learning Through
GPU Atari Emulation, 2019.

[9] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, B. Yotam, F.
Vlad, H. Tim, I. Dunning, S. Legg, K. Kavukcuoglu, IMPALA: scalable distributed
deep-RL with importance weighted actor-learner architectures, in: ICML, 2018.

[10] L. Espeholt, R. Marinier, P. Stanczyk, K. Wang, M. Michalski, SEED RL: scalable
and efficient deep-rl with accelerated central inference, in: ICLR, 2020.

[11] D. Gao, X. He, Z. Zhou, Y. Tong, K. Xu, L. Thiele, Rethinking pruning for acceler-
ating deep inference at the edge, in: KDD, 2020, pp. 155–164.

[12] X. Guo, S. Singh, H. Lee, R. Lewis, X. Wang, Deep learning for real-time Atari
game play using offline Monte-Carlo tree search planning, in: NeurIPS, 2014.

[13] Y. Guo, A. Yao, Y. Chen, Dynamic network surgery for efficient DNNs, in:
NeurIPS, 2016.

[14] S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan, Deep learning with lim-
ited numerical precision, in: ICML, PMLR, 2015, pp. 1737–1746.

[15] R. Han, D. Li, J. Ouyang, C.H. Liu, G. Wang, D. Wu, L.Y. Chen, Accurate differen-
tially private deep learning on the edge, in: IEEE TPDS, 2021.

[16] S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding, in: ICLR, 2016.

[17] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, Y. Yang, A game-theoretical
approach for user allocation in edge computing environment, IEEE Trans. Par-
allel Distrib. Syst. 31 (2020) 515–529.

[18] T.M. Ho, K.K. Nguyen, Joint server selection, cooperative offloading and han-
dover in multi-access edge computing wireless network: a deep reinforcement
learning approach, IEEE Trans. Mob. Comput. 1233 (2020).

[19] E. Horowitz, S. Sahni, Computing partitions with applications to the knapsack
problem, J. ACM (1974).

[20] C. Hu, W. Bao, D. Wang, F. Liu, Dynamic adaptive DNN surgery for inference
acceleration on the edge, in: Proceedings - IEEE INFOCOM 2019-April, 2019,
pp. 1423–1431.

[21] G. Huang, C. Luo, K. Wu, Y. Ma, Y. Zhang, X. Liu, Software-defined infrastruc-
ture for decentralized data lifecycle governance: principled design and open
challenges, in: ICDCS, IEEE, 2019, pp. 1674–1683.

[22] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized neural
networks, in: NeurIPS, 2016.

[23] Y. Jiang, Y. Hu, M. Bennis, F.C. Zheng, X. You, A mean field game-based dis-
tributed edge caching in fog radio access networks, IEEE Trans. Commun. 68
(2020) 1567–1580.

[24] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, L. Tang, Neuro-
surgeon: collaborative intelligence between the cloud and mobile edge, ACM
SIGPLAN Not. 52 (2017) 615–629.

[25] H. Mao, W.J. Dally, Deep compression: compressing deep neural, in: ICLR, 2016.
[26] S. Martello, P. Toth, Algorithms for Knapsack Problems, North-Holland Mathe-

matics Studies, 1987.
[27] V. Mnih, A.P. Badia, L. Mirza, A. Graves, T. Harley, T.P. Lillicrap, D. Silver,

K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in:
ICML, 2016.

[28] T. Mohammed, C. Joe-Wong, R. Babbar, M.D. Francesco, Distributed inference
acceleration with adaptive DNN partitioning and offloading, in: Proceedings -
IEEE INFOCOM 2020-July, 2020, pp. 854–863.

[29] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convolutional neural
networks for resource efficient inference, in: ICLR, 2017.

[30] K. Poularakis, J. Llorca, A.M. Tulino, I. Taylor, L. Tassiulas, Joint service place-
ment and request routing in multi-cell mobile edge computing networks, in:
Proceedings - IEEE INFOCOM 2019-April, 2019, pp. 10–18.

[31] Y. Qian, R. Wang, J. Wu, B. Tan, H. Ren, Reinforcement learning-based optimal
computing and caching in mobile edge network, IEEE J. Sel. Areas Commun. 38
(2020) 2343–2355.

[32] G. Qu, Y. Lin, A. Wierman, N. Li, Scalable Multi-Agent Reinforcement Learning
for Networked Systems with Average Reward, 2020.

[33] W. Shi, Y. Hou, S. Zhou, Z. Niu, Y. Zhang, L. Geng, Improving device-edge coop-
erative inference of deep learning via 2-step pruning, in: INFOCOM WKSHPS,
2019.

[34] F. Tang, Y. Zhou, N. Kato, Deep reinforcement learning for dynamic up-
link/downlink resource allocation in high mobility 5G HetNet, IEEE J. Sel. Areas
Commun. 8716 (2020) 1–10.

[35] S. Teerapittayanon, B. McDanel, H.T. Kung, Branchynet: fast inference via early
exiting from deep neural networks, in: ICPR, IEEE, 2016, pp. 2464–2469.

[36] S. Teerapittayanon, B. McDanel, H. Kung, Distributed deep neural networks over
the cloud, the edge and end devices, in: ICDCS, 2017, pp. 328–339.

[37] X. Wang, Y. Han, V.C. Leung, D. Niyato, X. Yan, X. Chen, Convergence of Edge
Computing and Deep Learning: A Comprehensive Survey, 2020.

[38] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, D. Batra,
Decentralized distributed ppo: solving pointgoal navigation, in: ICLR, 2020.

http://refhub.elsevier.com/S0743-7315(22)00141-1/bibF8A3443C3859BB3F9D6C6E6CDC426553s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibF8A3443C3859BB3F9D6C6E6CDC426553s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib1AD7B4CE8D2E4A462AFFF69C0C50F5E8s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib1AD7B4CE8D2E4A462AFFF69C0C50F5E8s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibEDF868A95F75BA007EC0BF0491F0A074s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibEDF868A95F75BA007EC0BF0491F0A074s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib168AB62F2ACBB88E84C6D6A2F77448CCs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib168AB62F2ACBB88E84C6D6A2F77448CCs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibDEEAB95E3D2C0DAEB1ED6AF1A743EB6Cs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibDEEAB95E3D2C0DAEB1ED6AF1A743EB6Cs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib9BC89481AB2ED93F6676445A41F8B57Bs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib9BC89481AB2ED93F6676445A41F8B57Bs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib264248D868D14B9942723215BF6167A8s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib264248D868D14B9942723215BF6167A8s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib264248D868D14B9942723215BF6167A8s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib3FA565EC66036E1076E2D438E8574162s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib3FA565EC66036E1076E2D438E8574162s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibA17E246FBB7B15A3EF2751E0E8F02727s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibA17E246FBB7B15A3EF2751E0E8F02727s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibA17E246FBB7B15A3EF2751E0E8F02727s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibFA4DDF04ABEB055A80761A2005898B43s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibFA4DDF04ABEB055A80761A2005898B43s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib04BCB1077C306259056B5FFCC2CA2ABAs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib04BCB1077C306259056B5FFCC2CA2ABAs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibD81FF30EA9CB8D5EB6DCFC3B14DDF461s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibD81FF30EA9CB8D5EB6DCFC3B14DDF461s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibBD17292AA89A434DFCEA0801B3122F02s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibBD17292AA89A434DFCEA0801B3122F02s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibB4960E65C21A3023CC7A11E8511E6B21s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibB4960E65C21A3023CC7A11E8511E6B21s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibFDD7FFFAFFC4975186439394D1E4D26As1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibFDD7FFFAFFC4975186439394D1E4D26As1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib7D83A4259E13B3BBF626B556C6D17014s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib7D83A4259E13B3BBF626B556C6D17014s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibB1844EF619DF00598E7992F5B70E7016s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibB1844EF619DF00598E7992F5B70E7016s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibB1844EF619DF00598E7992F5B70E7016s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibC738AF081688ECEEE861E73835F428A8s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibC738AF081688ECEEE861E73835F428A8s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibC738AF081688ECEEE861E73835F428A8s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibF6836C177D75EF57ADB99490F165336Bs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibF6836C177D75EF57ADB99490F165336Bs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibF9FECF3654F7CC56229C7DC4F05CC2B0s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibF9FECF3654F7CC56229C7DC4F05CC2B0s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibF9FECF3654F7CC56229C7DC4F05CC2B0s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib25C3BBBE545D626E8E22CC5CA59FC92As1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib25C3BBBE545D626E8E22CC5CA59FC92As1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib25C3BBBE545D626E8E22CC5CA59FC92As1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib3E5581E0D9D208F1426BFB08D7275119s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib3E5581E0D9D208F1426BFB08D7275119s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibF1CB227D87BDB498B90663197912AEB9s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibF1CB227D87BDB498B90663197912AEB9s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibF1CB227D87BDB498B90663197912AEB9s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib9BC6DE3F8DF300BD95691055D84A7F87s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib9BC6DE3F8DF300BD95691055D84A7F87s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib9BC6DE3F8DF300BD95691055D84A7F87s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibB114D11FC6F5D5BF4F002CB4C61A5C19s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibD992DB547AD5B7A3AFAB147DB80BC734s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibD992DB547AD5B7A3AFAB147DB80BC734s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib1A67E7D5B89C201C5510E7B9EA6CFD48s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib1A67E7D5B89C201C5510E7B9EA6CFD48s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib1A67E7D5B89C201C5510E7B9EA6CFD48s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib7CB8E64E016EA6B8B92EAA10AA7D7B47s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib7CB8E64E016EA6B8B92EAA10AA7D7B47s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib7CB8E64E016EA6B8B92EAA10AA7D7B47s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib3ECBEB28AC12AF9055A3CB89BF867FE4s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib3ECBEB28AC12AF9055A3CB89BF867FE4s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib65553EC588323FA7A8DA70FE53332D0Ds1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib65553EC588323FA7A8DA70FE53332D0Ds1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib65553EC588323FA7A8DA70FE53332D0Ds1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibEB57632C4A60ACDCE9367BA816094AA4s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibEB57632C4A60ACDCE9367BA816094AA4s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibEB57632C4A60ACDCE9367BA816094AA4s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib6E0EB1A0402135E3317835364022AB11s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib6E0EB1A0402135E3317835364022AB11s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibFA0A3629F914627B4136633DB2A7548Bs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibFA0A3629F914627B4136633DB2A7548Bs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibFA0A3629F914627B4136633DB2A7548Bs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibC52519D5BD84B311E2271590E96799E9s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibC52519D5BD84B311E2271590E96799E9s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibC52519D5BD84B311E2271590E96799E9s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib7B8AA349CB223B354F154D6E0114EAA6s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib7B8AA349CB223B354F154D6E0114EAA6s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibF7A5357349C6AF4B457C060AA53648A7s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibF7A5357349C6AF4B457C060AA53648A7s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib7CE83CA7ACC9A501B5B3CD614B2F8B6As1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib7CE83CA7ACC9A501B5B3CD614B2F8B6As1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib8DB316CABC7BC1E407E0D30579572883s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib8DB316CABC7BC1E407E0D30579572883s1

H. Dai, J. Wu, Y. Wang et al. Journal of Parallel and Distributed Computing 168 (2022) 108–119
[39] R. Xie, X. Jia, K. Wu, Adaptive online decision method for initial congestion
window in 5G mobile edge computing using deep reinforcement learning, IEEE
J. Sel. Areas Commun. 38 (2020) 389–403.

[40] M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, X. Liu, DeepWear: adaptive local
offloading for on-wearable deep learning, IEEE Trans. Mob. Comput. 19 (2020)
314–330.

[41] S. Yu, B. Dab, Z. Movahedi, R. Langar, L. Wang, A socially-aware hybrid compu-
tation offloading framework for multi-access edge computing, IEEE Trans. Mob.
Comput. 19 (2020) 1247–1259.

[42] Y. Zhan, J. Zhang, An incentive mechanism design for efficient edge learning by
deep reinforcement learning approach, in: Proceedings - IEEE INFOCOM 2020-
July, 2020, pp. 2489–2498.

Hao Dai received the M.Sc. degree in Communica-
tion and Electronic Technology from Wuhan Univer-
sity of Technology, in 2017. He is currently working
toward the PhD degree in the Shenzhen Institute of
Advanced Technology, Chinese Academy of Sciences.
His research interests include deep learning, reinforce-
ment learning, mobile edge computing systems.

Jiashu Wu received BSc. degree in Computer Sci-
ence and Financial Mathematics & Statistics from the
University of Sydney, Australia (2018), and M.IT de-
gree in Artificial Intelligence from the University of
Melbourne, Australia (2020). He is currently pursu-
ing his Ph.D at the University of Chinese Academy of
Sciences (Shenzhen Institute of Advanced Technology,
CAS). His research interests include big data and cloud
computing.

Yang Wang received the BSc degree in applied
mathematics from Ocean University of China (1989),
and the MSc. and PhD. degrees in computer science
from Carlton University (2001) and University of Al-
berta, Canada (2008), respectively. He is currently
with Shenzhen Institute of Advanced Technology, Chi-
nese Academy of Sciences, as a full professor and with
Xiamen University, China as an adjunct professor. His
research interests include service and cloud comput-

ing, programming language implementation, and software engineering. He
is an Alberta Industry R&D Associate (2009-2011), and a Canadian Ful-
bright Scholar (2014-2015).

Chengzhong Xu obtained B.Sc. and M.Sc. degrees
from Nanjing University in 1986, and 1989, respec-
tively, and a Ph.D. degree from the University of Hong
Kong in 1993, all in Computer Science and Engineer-
ing. Currently, he is a Chair Professor of Computer Sci-
ence and the Dean of Faculty of Science and Technol-
ogy, University of Macau, China. His recent research
interests are in cloud and distributed computing, sys-
tems support for AI, smart city and autonomous driv-

ing. He has published more than 400 papers in journals and conferences.
He serves on a number of journal editorial boards and the Chair of IEEE
TCDP from 2015 to 2020. He is a fellow of the IEEE.
119

http://refhub.elsevier.com/S0743-7315(22)00141-1/bib46CD31B59B0170BE6D9693E809FE33F0s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib46CD31B59B0170BE6D9693E809FE33F0s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib46CD31B59B0170BE6D9693E809FE33F0s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibAD585FD76D67EB7BC8B45DD5F2E1DB0As1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibAD585FD76D67EB7BC8B45DD5F2E1DB0As1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bibAD585FD76D67EB7BC8B45DD5F2E1DB0As1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib7647D8576C4A29B1CD4D2BB1F458F3EBs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib7647D8576C4A29B1CD4D2BB1F458F3EBs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib7647D8576C4A29B1CD4D2BB1F458F3EBs1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib5F044E7D0701634B4299B7519B70B846s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib5F044E7D0701634B4299B7519B70B846s1
http://refhub.elsevier.com/S0743-7315(22)00141-1/bib5F044E7D0701634B4299B7519B70B846s1

	Towards scalable and efficient Deep-RL in edge computing: A game-based partition approach
	1 Introduction
	2 Background and motivation
	3 Coknight and DNN partition
	3.1 Architecture overview
	3.2 Partition problem formulation

	4 DNN partition algorithm design
	4.1 Problem complexity
	4.2 Dynamic algorithm

	5 Performance studies
	5.1 Experimental setup
	5.2 Numerical results
	5.2.1 Convergence efficiency
	5.2.2 Resource efficiency
	5.2.3 Scalability

	6 Related work
	6.1 Distributed deep reinforcement learning
	6.2 DNN inference acceleration

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

